Monthly Archives: February 2018

Afforestation neutralizes soil pH

Pinus koraiensis_Pixabay_Feb2018

Afforestation is a type of land use change project primarily designated for wood production, soil and water conservation, increasing carbon storage and mitigating climate change. This study shows that afforestation changes, moreover, soil pH, that is a key soil variable. Photo by: Pixabay

Soil pH, which measures the acidity or alkalinity of soils, is associated with many soil properties such as hydrolysis equilibrium of ions, microbial communities, and organic matter contents. Soil pH regulates soil biogeochemical processes and has cascading effects on terrestrial ecosystem structure and functions.

Afforestation has been widely adopted to increase terrestrial carbon sequestration and enhance water and soil preservation. However, the effect of afforestation on soil pH is still poorly understood and inconclusive.

In a new study in the journal Nature Communications scientists investigate the afforestation-caused soil pH changes with pairwise samplings from 549 afforested and 148 control plots in northern China, across different tree species and soil pH gradient.

Authors find significant soil pH neutralization by afforestation—afforestation lowers pH in relatively alkaline soils but raises pH in relatively acid soils. The soil pH thresholds (TpH), the point when afforestation changes from increasing to decreasing soil pH, are species-specific, ranging from 5.5 (Pinus koraiensis) to 7.3 (Populus spp.) with a mean of 6.3.

The study provides improved understandings on how afforestation impacts soil pH across a broad range of soil types and afforestation tree species, which is critical for developing climate change mitigation strategies and ecological sustainability plans.

“Our study indicates that afforestation has the potential to alleviate soil acidification caused by enhanced acidic deposition with the appropriate selection of tree species and thus could further increase ecosystem productivity and carbon sequestration”, said Dr. Songbai Hong from Sino-French Institute for Earth System Science, Peking University.


“Our findings indicate that afforestation can modify soil pH if tree species and initial pH are properly matched, which may potentially improve soil fertility and promote ecosystem productivity”, said Prof. Josep Peñuelas from CREAF-CSIC Barcelona.

According to the authors, further field studies are still needed to determine best tree species for afforestation according to soil properties, water availability and climate suitability, and designated ecosystem and socioeconomic goals.

Journal Reference: Hong, S., Piao, s., Chen, A., Liu, Y., Liu, L., Peng, S., Sardans, J., Sun, Y., Peñuelas, J., Zeng, H. 2017. Afforestation neutralizes soil pH. Nature Communications, (2018) 9:520. doi: 10.1038/s41467-018-02970-1.

The large mean body size of mammalian herbivores explains the productivity paradox during the last glacial maximum

Mammalian herbivores live in major terrestrial ecosystems on Earth. During the past decades, our understanding has increased about the important role of large mammalian herbivores (body mass >10 kg) in controlling vegetation structure and carbon and nutrient flows within ecosystems. Photo by: Pixabay


Large herbivores are a major agent in ecosystems, influencing vegetation structure and carbon and nutrient flows (shattering woody vegetation and consuming large amounts of foliage). Despite the non-negligible ecological impacts of large herbivores, most of the current DGVMs, or land surface models that include a dynamic vegetation module, lack explicit representation of large herbivores and their interactions with vegetation.

During the last glacial period, the steppe-tundra ecosystem prevailed on the unglaciated northern lands, hosting a high diversity and density of megafaunal herbivores. The apparent discrepancy between the late Pleistocene dry and cold climates and the abundant herbivorous fossil fauna found in the mammoth steppe biome has provoked long-standing debates, termed as “productivity paradox” by some paleontologists.

In a new study in the journal Nature Ecology and -Evolution scientists, aiming to address the productivity paradox, incorporated a grazing module in the ORCHIDEE-MICT DGVM model. “This grazing module is based on physiological and demographic equations for wild large grazers, describing grass forage intake and metabolic rates dependent on body size, and demographic parameters describing the reproduction and mortality rates of large grazers”, explained Dr. Dan Zhu from the Laboratoire des Sciences du Climat et de l’Environnement, LSCE CEA CNRS UVSQ, France.

In the study authors also extended the modelling domain to the globe for two distinct periods, present-day and the last glacial maximum (ca. 21 ka BP). The present-day results of potential grazer biomass, combined with an empirical land use map, infer a reduction of wild grazer biomass by 79-93% due to anthropogenic land replacement over natural grasslands.

For the last glacial maximum, authors find that the larger mean body size of mammalian herbivores than today is the crucial clue to explain the productivity paradox, due to a more efficient exploitation of grass production by grazers with a larger-body size. Evidences from fossil and extant mammal species have shown a long-term trend towards increasing body size in mammals throughout the Cenozoic, this indicates selective advantages of larger body sizes, such as larger guts of herbivores that allow microbes to break down low-quality plant materials, and higher tolerance to coldness and starvation. “Our results show quantitatively the importance of body size to explain the productivity paradox, as a larger-body size enables grazers to live on the mammoth steppe in substantial densities during the LGM, despite colder temperatures and shorter growing seasons than today”, said Dr. Philippe Ciais from the Laboratoire des Sciences du Climat et de l’Environnement, LSCE CEA CNRS UVSQ, France.

For the authors large herbivores might have fundamentally modified Pleistocene ecosystems; therefore, “to bring them into large-scale land surface models would help us better understand the intricate interactions among climate, plants and animals that shaped the biosphere”, said Prof. Josep Peñuelas from CREAF-CSIC Barcelona.

Journal Reference: Zhu, D., CIiais, P., Chang, J., Krinner, G., Peng, S., Viovy, N., Peñuelas, J., Zimov, S. 2018. The large mean body size of mammalian herbivores explains the productivity paradox during the last glacial maximum. Nature Ecology & Evolution

Josep Peñuelas named Distinguished Scientist by Chinese Academy of Sciences

This award distinguish well established and internationally recognized scientists in their respective research fields, having obtained outstanding scientific accomplishment and prestigious international honors, awards or prizes.

The fellowship aims to create or strengthen partnerships between CAS host institutions and the recipients’ home institutions.