• Next 10 years critical for achieving climate change goals

    Carbon dioxide (CO2) and other greenhouse gases in the atmosphere can be reduce in two ways — by cutting our emissions, or by removing it from the atmosphere, for example through plants, the ocean, and soil.

    In a new study, published in the journal Nature Communications, researchers from the International Institute for Applied Systems Analysis (IIASA) used a global model of the carbon system that accounts for carbon release and uptake through both natural and anthropogenic activities.

    “The study shows that the combined energy and land-use system should deliver zero net anthropogenic emissions well before 2040 in order to assure the attainability of a 1.5°C target by 2100,” says IIASA Ecosystems Services and Management Program Director Michael Obersteiner, a study coauthor.

    According to the study, fossil fuel consumption would likely need to be reduced to less than 25% of the global energy supply by 2100, compared to 95% today. At the same time, land use change, such as deforestation, must be decreased. This would lead to a 42% decrease in cumulative emissions by the end of the century compared to a business as usual scenario.

    “This study gives a broad accounting of the carbon dioxide in our atmosphere, where it comes from and where it goes. We take into account not just emissions from fossil fuels, but also agriculture, land use, food production, bioenergy, and carbon uptake by natural ecosystems,” explains World Bank consultant Brian Walsh, who led the study while working as an IIASA researcher.

    The compares four different scenarios for future energy development, with a range of mixtures of renewable and fossil energy. In a “high-renewable” scenario where wind, solar, and bioenergy increase by around 5% a year, net emissions could peak by 2022, the study shows. Yet without substantial negative emissions technologies, that pathway would still lead to a global average temperature rise of 2.5°C, missing the Paris Agreement target.

    Walsh notes that the high-renewable energy scenario is ambitious, but not impossible — global production of renewable energy grew 2.6% between 2013 and 2014, according to the IEA. In contrast, the study finds that continued reliance on fossil fuels (with growth rates of renewables between 2% and 3% per year), would cause carbon emissions to peak only at the end of the century, causing an estimated 3.5°C global temperature rise by 2100.

    The authors note that not only the mix of energy matters, but also the overall amount of energy consumed. The study also included ranges for high energy consumption and low energy consumption.

    The study adds to a large body of IIASA research on climate mitigation policy and the chances of achieving targets.

    “Earlier work on mitigation strategies by IIASA has shown the importance of demand-side measures, including efficiency, conservation, and behavioral change. Success in these areas may explain the difference between reaching 1.5C instead of 2C,” says IIASA Energy Program Director Keywan Riahi, who also contributed to the new work.

    A new model

    The study is one of the first published results from the newly developed FeliX model, a system dynamics model of social, economic, and environmental earth systems and their interdependencies. The model is freely available for download and use at http://www.felixmodel.com/.

    “Compared to other climate and integrated assessment models, the FeliX model is less detailed, but it provides a unique systemic view of the whole carbon cycle, which is vital to our understanding of future climate change and energy,” says IIASA Ecosystem Services and Management Program Director.

    This study received support from the European Research Council Synergy grant ERC-2013-SyG-610028

    Reference:

    Brian Walsh, Philippe Ciais, Ivan A. Janssens, Josep Peñuelas, Keywan Riahi, Felicjan Rydzak, Detlef P. van Vuuren, Michael Obersteiner. Pathways for balancing CO2 emissions and sinks. Nature Communications, 2017; 8: 14856 DOI: 10.1038/NCOMMS14856

    Human population growth offsets climate-driven increase in woody vegetation in sub-Saharan Africa

    Africa_woody vegetations_Pixabay2017
    Woody cover has actually increased over the past 20 years in large parts of Africa, and in particular in drylands. Researchers attribute much of this increase to changes in rainfall and the growing concentration of CO2 in the atmosphere. Photo by Pixabay

    The rapidly growing human population in sub-Saharan Africa generates increasing demand for agricultural land and forest products, which presumably leads to deforestation. Conversely, a greening of African drylands has been reported, but this has been difficult to associate with changes in woody vegetation. There is thus an incomplete understanding of how woody vegetation responds to socio-economic and environmental change.

    Deforestation in Africa has been high on the environmental agenda for decades. In a new study published in Nature Ecology and Evolution, researchers used a passive microwave Earth observation data set to demonstrate that the realities are more complex.

    Many earlier studies have overlooked that woody cover has actually increased over the past 20 years in large parts (~30%) of Africa, and in particular in drylands. This increase explains the observed ‘greening’ of drylands, both north and south the Equator. Authors further find that much of this increase may be explained by changes in rainfall and the growing concentration of CO2 in the atmosphere. In humid parts of Africa trends in woody cover are more diverse. Negative trends dominate where population density is high, and often in areas with dense forests with high ecological and economic value. The agreement between the map showing woody cover changes and the one with human population growth is so striking that statistics are almost needless to transport the message:

    Grafic_Brandt_Nature_2017

    The findings thus contradict, on one hand, generally held views of loss of woody cover in drylands, e.g. in the Sahel-belt across Africa, yet on the other hand it supports the concerns for deforestation, due to agricultural expansion in more densely populated regions, and due to logging in the sparsely populated Congo basin.

    The positive and negative impacts of observed trends are difficult to balance (increase in carbon stocks, lower albedo due to greater woody cover in drylands may have a positive effect on rainfall, the loss of forests in certain humid areas may imply serious losses of biodiversity and ecosystem services…).”At continental scale, it is thus impossible to draw final conclusions, and difficult to state if positive and negative effects are balanced. Local and regional scaled studies have to be evaluated and combined with these continental scale attempts”, said Dr. Martin Brandt from University of Copenhagen.

    “Given that Africa’s population is expected to continue growing throughout much of this century, there is a clear need to sharpen natural resource management strategies to counter losses while taking advantage of increases in woody cover in drylands which are large enough to act as a carbon sink” said Dr. Aleixandre Verger from CREAF-CSIC.

    “The great new thing is that we are now able to localize and quantify areas of change and we are working hard to quantify the amount of carbon which is affected by observed changes. This knowledge is critical in the fight against climate change”, said Prof. Josep Peñuelas from CSIC-CREAF.

    Citation: Brandt, M., Rasmussen, K., Penuelas, J., Tian, F., Schurgers, G., Verger, A., Mertz, O., Palmer, J., Fensholt, R. 2017. Human population growth offsets climate driven woody vegetation increase in sub-Saharan Africa. Nature Ecology and Evolution, 1, 0081 (2017), doi: 10.1038/s41559-017-0081.

    Sequence of plant responses to droughts of different timescales: lessons from holm oak (Quercus ilex) forests

    Montserrat_Lluis Comas_2017
    Tree physiology, forest structure and site-specific factors interact to determine the response of forests to recurring annual droughts, however, the increasing frequency of extreme droughts is making Mediterranean forests vulnerable. Picture shows Quercus ilex forests standing on the slopes of the sacred Montserrat mountain. Photo by Lluís Comas

     

    The functional traits of plants in regions of the world with a Mediterranean climate have been shaped to tolerate periods of water deficit. These species are adapted to summer droughts but may not be able to cope with future increases in drought intensity, duration, and/or frequency.

    In a new study published in Plant Ecology & Diversity researchers review the mechanisms and traits of drought resistance and recovery of the holm oak (Quercus ilex), which they propose as a model species for Mediterranean-type ecosystems. The aim of the study was to understand the differences and links between the responses of Q. ilex to summer droughts, extreme droughts, and long-term drought experiments. A main goal was to provide an integral picture of drought responses across organizational and temporal scales for identifying the most relevant processes that are likely to contribute to determining the future of Mediterranean vegetation. Evidence from long-term drought experiments showed that acclimation processes from the molecular (e.g. epigenetic changes) to the ecosystem level (e.g. reductions in stand density) mitigate the effects of drought.

    Changes in leaf morphology and hydraulics, leaf-to-shoot allometry, and root functioning are among the key mechanisms for overcoming increasing drought. The duration of drought determines its severity in terms of canopy loss and stem mortality. Although Q. ilex can vigorously resprout after such episodes, its resilience may be subsequently reduced. In the future, higher frequency of return of extreme droughts will challenge thus the capacity of these forests to recover. The insights provided by this review of the complex interplay of processes that determine the response of trees to droughts of different duration, intensity, and frequency will also help to understand the likely responses of other resprouting angiosperms in seasonally dry ecosystems that share similar functional traits with Q. ilex.

    “The limits of plasticity in primary and secondary growth in relation to future drier and warmer conditions may be determinants for the persistence of some populations in their current structure and function”, said Dr. Adrià Barbeta from CSIC-CREAF.

    “We recommend that future research should keep on addressing the combined effect of consecutive extreme droughts and drier average conditions on the structure and function of plant communities, but with a special emphasis on the resilience after crown damage and on the access to the vital long-lasting deep water pools”, said Prof. Josep Peñuelas from CSIC-CREAF.

    Citation: Barbeta, A., Peñuelas, J. 2016. Sequence of plant responses to droughts of different timescales: lessons from holm oak (Quercus ilex) forests. Plant Ecology & Diversity, 9:4, 321-338, doi: 10.1080/17550874.2016.1212288

    Future climate change will affect plants and soil differently

    Reinsch_Sci reports_2017
    Changes of aboveground net primary production and soil respiration in response to drought indicated that wet systems had an overall risk of increased loss of C but drier systems did not. Photo by: Pixabay

     

    In a new study published in the Nature journal Scientific Reports, researchers have found that soil carbon loss is more sensitive to climate change compared to carbon taken up by plants. In drier regions, soil carbon loss decreased but in wetter regions soil carbon loss increased. This could result in a positive feedback to the atmosphere leading to an additional increase of atmospheric CO2 levels.

    Scientists analysed data from seven climate change experiments across Europe to show how European shrubland plant biomass and soil carbon loss is affected by summer drought and year-around warming.

    The research was conducted by a group of European and American scientists including Marc Estiarte and Josep Peñuelas from CSIC-CREAF.

    The authors showed that soil carbon loss is most responsive to change in soil water. Soil water plays a critical role in wet soils where water logging limits decomposition processes by soil biota resulting in a build-up of soil carbon as peat. Drying of the soil removes this limitation resulting in soil carbon loss. In contrast in drier soils, reduced rainfall reduces soil water below the optimum for soil biota resulting in a decrease in soil carbon loss.

    Most of the earth’s terrestrial carbon is stored in soil. The world’s soil carbon stocks are estimated to be circa 2000 gigatonnes (1 gigatonne = 1 000 000 000 000 kilograms) of carbon. The researchers showed that drought decreases and increases soil carbon more predictably than warming.

    Dr Sabine Reinsch, the first author on the paper and a Soil Ecologist at the Centre for Ecology & Hydrology in Bangor, said, “This cross European study enabled us, for the first, time to investigate plant and soil responses to climate change beyond single sites.

    “Putting ecosystem responses to climate change into the wider context of natural climate gradients helps us to understand the observed responses of plants and soils better.”

    Professor Penuelas, the Head of the Global Ecology Unit CREAF-CSIC and co-author on the paper, Prof Claus Beier and Prof. Bridgette Emmet, as senior authors of the study commented that “The study highlights and illustrates new and fundamental understanding related to the response of ecosystems to climate change.

    “By conducting the same experiment at different moisture and temperature conditions across the European continent, it has become clear and visible how the pressure from climate change factors may act differently, and sometimes even opposite, across these conditions”.

    “These differences are important for our overall assessment of future ecosystem responses to climate change, but the study also shows that they can be understood and to some extent predicted.” “These results emphasize how sensitive soil processes such as soil respiration are to environmental change. “

    Dr Marc Estiarte, researcher at Spanish research centre CREAF-CSIC and co-author on the paper, said, “In contrast to the soils, reducing precipitation was not a threat to plant productivity in wetter sites, and in the drier sites plants resisted proportionally more than in intermediate sites, whose aboveground productivity was shown more sensitive. This illustrates the clear difference in sensitivity of the soils compared to the plants across the climate gradient.”

    The new paper in Scientific Reports considers plant and soil responses to drought and warming only across European shrublands. There are several other biomes in the world where plant and soil responses to climate change could be different.

    “Understanding the responses of plants and soils in other biomes will provide a better understanding of climate change and the effects on global plant and soil interactions and the feedbacks to climate”, said Prof. Josep Penuelas from CREAF-CSIC Barcelona.

    Paper reference

    Reinsch, S. Estiarte M., Penuelas J. et al. ‘Shrubland primary production and soil respiration diverge along European climate gradient,’ Scientific Reports. Published online 3 March 2017. DOI: 10.1038/srep43952

    The paper is available as an open access document via this URL: www.nature.com/articles/srep43952

    Pharmaceuticals and Personal-Care Products in Plants

    Bartrons_Peñuelas_Trends_Pixabay_Feb2017

    Pharmaceuticals and personal-care products reach plants predominantly from the use of reclaimed wastewater for irrigation. Photo by Pixabay

     Pharmaceutical and personal-care products (PPCPs) for human and animal use are increasingly released into the environment.

    Plants act as excellent tracers of global pollution because they are present in almost all areas of the planet and accumulate chemical compounds present in the atmosphere, in the water with which they are irrigated, and in the soil on which they grow.

    PPCP removal from plants for waste water treatment is incomplete, and the dispersal of these compounds into the environment and accumulation in plants mostly occurs from irrigating with reused water and from the application of biosolids and manure to land.

    In a featured article in the journal Trends in Plant Science, UVIC and CREAF-CSIC researchers highlighted the potential of plants as biomonitors of PPCPs in the environment and the risk that the dietary intake of these PPCP-contaminated plants could have on the entire biosphere including on human health, even at low concentrations.

    “Plants accumulate PPCP at concentrations that can be toxic to plants, plant microbiota, and soil microorganisms and thus affect nutrient cycling, food webs and ecosystem functioning. Furthermore, the risk to humans from dietary intake of these PPCP-contaminated plants (mostly crops) is uncertain but warrants deep consideration”, said Dr. Mireia Bartrons from Universitat de Vic, Barcelona.

    “Further attention has recently been given to the effects of human and veterinary antibiotics. They dramatically affect the structure and function of soil microbial communities and promote the emergence of multidrug-resistant human pathogens that increasingly threaten successful anti-biotic treatment of bacterial infections”, said Prof. Josep Penuelas from CREAF-CSIC Barcelona.

    Citation: Bartrons, M., Peñuelas, J. 2017. Pharmaceuticals and Personal-Care Products in Plants. Trends in Plant Science, (2017) 22, Issue 3, 194–203. doi: 10.1016/j.tplants.2016.12.010.

    Phosphorus accumulates faster than nitrogen globally in freshwater ecosystems under anthropogenic impacts

    Water2_Pexels_Jan17

    Underwater image of a lake. Photo by Pexels

    Human activities have drastically accelerated Earth’s major biogeochemical cycles, altering the the nitrogen (N) and phosphorus (P) cycles.

    Combined effects of cumulative nutrient inputs and biogeochemical processes that occur in freshwater under anthropogenic eutrophication could lead to myriad shifts in N:P stoichiometry in global freshwater ecosystems, but this was not yet well-assessed.

    In a new study in the journal Ecology Letters researchers from Peking University and CREAF-CSIC evaluated the characteristics of N and P stoichiometries in bodies of freshwater and their herbaceous macrophytes across human-impact levels, regions and periods.

    Freshwater and its macrophytes had higher N and P concentrations and lower N:P ratios in heavily than lightly human-impacted environments, further evidenced by spatiotemporal comparisons across eutrophication gradients. N and P concentrations in freshwater ecosystems were positively correlated and N:P ratio was negatively correlated with population density in China.

    “Our findings indicate that anthropogenic eutrophication might thus shift aquatic ecosystems from a state of predominant P limitation to being potentially limited or co-limited by N, or by other factors such as light, especially in rapidly developing regions such as China” said Zhengbing Yan, researcher from Peking University.

    “These results indicate a faster accumulation of P than N in human-impacted freshwater ecosystems, which could have large effects on the trophic webs and biogeochemical cycles of estuaries and coastal areas by freshwater loadings, and reinforces the importance of rehabilitating these ecosystems”, said Prof. Josep Penuelas from CREAF-CSIC Barcelona.

    Citation: Yan, Z., Han, W., Penuelas, J., Sardans, J., Elser, J.J., Du, E., Fang, J. 2016. Phosphorus accumulates faster than nitrogen globally in freshwater ecosystems under anthropogenic impacts. Ecology Letters 19, (2016), 1237-1246. doi: 10.1111/ele.12658

    Plausible rice yield losses under future climate warming

    Rice fields, researchers analyze the sensitivity of rice yield to climate warming. Photo by Pixabay
    Rice fields, researchers analyze the sensitivity of rice yield to climate warming. Photo by Pixabay

    Rice is the staple food for more than 50% of the world’s population. Reliable prediction of changes in rice yield is thus central for maintaining global food security. This is an extraordinary challenge.

    In a new study in the journal Nature Plants researchers compare the sensitivity of rice yield to temperature increase derived from field warming experiments and three modelling approaches: statistical models, local crop models and global gridded crop models.

    Field warming experiments produce a substantial rice yield loss under warming, with an average temperature sensitivity of −5.2 % per degree of warming. Local crop models give a similar sensitivity (−6.3 %), but statistical and global gridded crop models both suggest less negative impacts of warming on yields (−0.8 % and −2.4 7%, respectively).

    Using data from field warming experiments, researchers further propose a conditional probability approach to constrain the large range of global gridded crop model results for the future yield changes in response to warming by the end of the century (from −1.3% to −9.3% per degree of warming). The constraint implies a more negative response to warming (−8.3 %) and reduces the spread of the model ensemble by 33%. This yield reduction exceeds that estimated by the International Food Policy Research Institute assessment (−4.2 to −6.4% ).

    “Our study suggests that without CO2 fertilization, effective adaptation and genetic improvement, severe rice yield losses are plausible under intensive climate warming scenarios” said Dr. Chuang Zhao, researcher from Peking University.

    “The long-term perspective of climate change allows us to prepare agricultural production systems for this challenge, but suitable policies must be put in place in the near future, given that targeted research on adaptation options and their large-scale implementation will require considerable time”, said Prof. Josep Penuelas from CREAF-CSIC Barcelona.

    Citation: Zhao, C., Piao, S., Wang, X., Huang, Y., Ciais, P., Elliott, J., Huang, M., Janssens, I.A., Li, T., Lian, X., Liu, Y., Müller, C., Peng, S., Wang, T., Zeng, Z., Penuelas, J. 2016. Plausible rice yield losses under future climate warming. Nature Plants 3, 16202 (2016), doi: 10.1038/nplants.2016.202.

    Losses of soil carbon under climate warming might equal U.S. emissions

    Greenland_permafrost
    Carbon stores are greatest in places like the Arctic and the sub-Arctic, where the soil is cold and often frozen Photo by SHUTTERSTOCK

     

    A new global analysis finds that warming temperatures will trigger the release of trillions of kilograms of carbon from the planet’s soils, driven largely by the losses of carbon in the world’s colder places.

     See short video about this paper: https://youtu.be/IrKOpPJIbXA

    New Haven, Conn. – For the past two decades, scientists have speculated that rising global temperatures may alter the ability of soils to store huge amounts of carbon. If warming accelerates the release of carbon stored in the soil, it could trigger a dangerous feedback effect that could have runaway effects on climate change. Yet, despite thousands of studies around the world, we have remained unclear about whether soil carbon storage will increase or decrease in response to warming.

    Finally, a global perspective has allowed us to see past the mixed results of single-site studies to see the global patterns in this effect.

    In a new study in the journal Nature researchers find that warming will drive the loss of trillions of kg of carbon from the soil. A conservative estimate by the researchers suggest that this value will exceed 55 trillion kg by 2050.

    This value would represent up to 17% on top of current anthropogenic emissions that we expect over that time.

    The results are based on an analysis of soil carbon data from dozens of warming experiments conducted all over the world in the past 20 years.

    Using this worldwide dataset, the researchers generated a global map of the sensitivity of soil carbon to warming, showing that carbon loss is greatest in the world’s colder places, at high latitudes, where massive stocks of carbon have built up over thousands of years and slow microbial activity has kept them relatively secure.

    “Soil carbon stores are greatest in places like the Arctic and the sub-Arctic, where the soil is cold and often frozen. In those conditions microbes are less active and so carbon has been allowed to build up over many centuries,” said lead author Thomas Crowther, at the Yale School of Forestry & Environmental Studies (F&ES).

    “But as you start to warm those areas, the microbes become more active, that’s when the carbon losses are likely to happen,” Crowther said. “The scary thing is, these cold regions are the places that are expected to warm the most under climate change.”

    The study predicts that for one degree of warming, about 30 petagrams of soil carbon will be released into the atmosphere, or about 2-3 times as much as is emitted annually due to human-related activities. This is a sobering prospect, given that the planet is likely to warm by 2 degrees Celsius by mid-century.

    Other scientists on the team include Marc Estiarte and Josep Peñuelas from CREAF, as well as collaborating researchers from more than 30 other institutions.

    Marc Estiarte commented on the value of the results: “We suspected that cold regions were key because warming could potentially reverse the carbon-accumulating pressure that cold temperatures have been exerting since such a long time”

    The results represent a warn because “the vulnerability of the northern soil carbon pool is a threat to the stabilization of the CO2 concentrations in the atmosphere due to the positive feedback that can unfold between climate warming and soil carbon losses to the atmosphere”, in the words of Josep Peñuelas.

    Understanding these processes at a global scale is critical for our understanding of climate change. “Getting a handle on these kinds of feedbacks is essential if we’re going to make meaningful projections about future climate conditions. Only then can we generate realistic greenhouse gas emission targets that are effective at limiting climate change,” said Crowther.

    More information: T. W. Crowther et al, Quantifying global soil carbon losses in response to warming, Nature (2016). DOI: 10.1038/nature20150

    A remotely sensed pigment index reveals photosynthetic phenology in evergreen conifers

    Boreal forest
    Boreal forest, researchers find a close correspondence between seasonally changing foliar pigment level and evergreen photosynthetic activity Photo by ŠtefanŠtefančík

    In evergreen conifers, where the foliage amount changes little with season, accurate detection of the underlying “photosynthetic phenology” from satellite remote sensing has been difficult, causing errors in terrestrial photosynthetic carbon uptake models. This represents a challenge for global models of ecosystem carbon uptake.

    In a new study in the journal Proceedings of the National Academy of Sciences researchers find a close correspondence between seasonally changing foliar pigment levels, expressed as chlorophyll/carotenoid ratios, and evergreen photosynthetic activity, leading to a “chlorophyll/carotenoid index” (CCI) that tracks evergreen photosynthesis at multiple spatial scales.

    When calculated from NASA’s Moderate Resolution Imaging Spectroradiometer satellite sensor, the CCI closely follows the seasonal patterns of daily gross primary productivity of evergreen conifer stands measured by eddy covariance.

    This discovery provides a way of monitoring evergreen photosynthetic activity from optical remote sensing, and indicates an important regulatory role for carotenoid pigments in evergreen photosynthesis. “This methodology could improve the assessment of the evergreen component of the terrestrial carbon budget, which has been elusive” said Prof. Josep Peñuelas.

    “Improved methods of monitoring photosynthesis from space can improve our understanding of the global carbon budget in a warming world of changing vegetation phenology”, said Prof. John Gamon.

     

    Citation: Gamon, J., Huemmrich, J.K.F., Wong, C.Y.F., Ensminger, I., Garrity, S., Hollinger, D.Y., Noormets, A., Peñuelas, J. 2016. A remotely sensed pigment index reveals photosynthetic Q:1 phenology in evergreen conifers. Proceedings of the National Academy of Sciences, 2016. In press

    Study Finds Limited Sign of Soil Adaptation to Climate Warming

    Soil warming experiment at Toolik Station Photo by Jim Tang(1)
    This photo shows measurements of carbon flux from soil at Toolik Field Station in Arctic Alaska. Credit: Jianwu Tang

     

     WOODS HOLE, Mass. — While scientists and policy experts debate the impacts of global warming, the Earth’s soil is releasing roughly nine times more carbon dioxide to the atmosphere than all human activities combined. This huge carbon flux from soil, which is due to the natural respiration of soil microbes and plant roots, begs one of the central questions in climate change science. As the global climate warms, will soil respiration rates increase, adding even more carbon dioxide to the atmosphere and accelerating climate change?

    Previous experimental studies of this question have not produced a consensus, prompting Marine Biological Laboratory scientists Joanna Carey, Jianwu Tang and colleagues to synthesize the data from 27 studies across nine biomes, from the desert to the Arctic. Their analysis is published this week in Proceedings of the National Academy of Sciences. This represents the world’s largest dataset to date of soil respiration response to experimental warming.

    One prediction from the synthesis is that rising global temperatures result in regionally variable responses in soil respiration, with colder climates being considerably more responsive. “Consistently across all biomes, we found that soil respiration increased with soil temperature up to about 25° C (77° F),” says Carey, a postdoctoral scientist in the MBL Ecosystems Center. Above the 25° C threshold, respiration rates decreased with further increases in soil temperature.

    “That means the Arctic latitudes, where soil temperatures rarely, if ever, reach 25° C , will continue to be most responsive to climate warming. Because there is so much carbon stored in frozen soils of the Arctic, this has really serious repercussions for future climate change,” Carey says.

    Soil scientists are struggling to find evidences of soil acclimation to warming, as indicated by some individual field experiments, but the current study found limited evidence of it.

    “The occurrence of acclimation would provide some relieve on the positive feedback between warming and CO2 release by respiration from soil” says Marc Estiarte, a member of the research teams at CREAF.

    The information provided by the study will be critical to improve the soil-atmosphere interactions in the Earth-system models. The results of the study “will greatly improve our mechanistic understanding of how carbon dynamics change with climate warming”, in the words of Josep Peñuelas, a member of the research teams at CREAF

    To understand how global carbon in soils will respond to climate change, the authors stress, more data are needed from under- and non-represented regions, especially the Arctic and the tropics.

     

    Citation:

    Carey, Joanna A. et al (2016) Temperature response of soil respiration largely unaltered with experimental warming. Proc. Natl. Acad. Sci. DOI: 10.1073/pnas.1605365113

    Científics alerten a la revista Scientific Reports de l’extensa acumulació de contaminants orgànics a la vegetació arreu del planeta

    Un article publicat a la revista Scientific Reports alerta d’una extensa acumulació de contaminants orgànics a la vegetació arreu del planeta. L’article ha recollit, analitzat i comparat les dades de 79 estudis sobre aquesta matèria publicats entre 1979 i 2015, més de la meitat dels quals incloïen resultats d’àrees rurals i remotes.
    El treball l’ha elaborat la doctora en Biologia i professora de la Universitat de Vic – Universitat Central de Catalunya Mireia Bartrons, juntament amb Jordi Catalan i Josep Peñuelas, ambdós investigadors membres del CREAF, el centre públic de recerca en ecologia terrestre i anàlisi del territori que genera coneixement i metodologies per a la conservació, la gestió i l’adaptació del medi natural al canvi global.

    See more at: http://www.uvic.cat/cient%C3%ADfics-alerten-la-revista-scientific-reports-de-l%E2%80%99extensa-acumulaci%C3%B3-de-contaminants-org%C3%A0nics-la#sthash.urpo4Pl8.dpuf

    See more at: http://www.uvic.cat/

    IMBALANCE-P article on how ocean acidification will impact marine life

    A new analysis by Ligia Azevedo from IIASA and collaborators provides a holistic assessment of the impacts of climate change and ocean acidification on marine organisms including coral, shellfish, sea urchins, and other calcifying species. Please, find more detailed information here.

    More than 30% of phosphorus emitted to the atmosphere is a result of human activities

    According to the study of the IMBALANCE-P ERC Synergy Grant researchers, China and India contributes 43% of this amount. For decades it had been thought that human activities were responsible for only around 5% of atmospherically-circulating phosphorus.

    More phosphorus in the air means more phosphors deposited on the ground. This can boost plant growth and the capacity to sequester atmospheric CO2; for that reason human activities may be altering the phosphorus and carbon cycles to a degree which was previously unknown.

     

    December 15th 2014. Researchers of the IMBALANCE-P ERC Synergy Grant are working on the most realistic planetary atmospheric phosphorus budget done to date. Phosphorus is an essential nutrient for life and also plays a fundamental role in agriculture and world food security. Phosphorus is found in mineral reserves and in living beings, and despite being much less known, phosphorus is also in the atmosphere. Before the industrial era phosphorus was only naturally emitted to the atmosphere due to volcanic explosions, emissions of biogenic aerosols, and forest fires, in addition to being transported in continental dust and in marine salt. Now, the article published in Nature Geoscience has revealed the impact that human activities have had and are having on the cycle of phosphorus in the atmosphere. The team of international researchers publishing this information has shown that more than 30% of phosphorus currently emitted to the atmosphere is the result of human activities, basically from the burning of coal and biomass, whereas to date it was thought that this number was closer to 5%.

    According to the results, the total quantity of phosphorus emitted to the atmosphere has increased 30% in the previous fifty years as a result of a doubling of emissions produced by human beings. Currently, 43% of anthropogenic phosphorus emissions to the atmosphere are from China and India, while European emissions have continued to decline year after year.

    To carry out the study, the researchers created an inventory of natural and anthropic sources in 222 countries and territories for the period of 1960-2007. They used samples of coal from 13 different countries and samples of biomass of the 11 tree species and 9 crops most utilized as combustibles.

    Combustion emits CO2 to the atmosphere, but phosphorus helps store it 

    Phosphorus is a limiting nutrient for plant growth. A lot of phosphorus makes a soil fertile, helping plants grow and store more atmospheric CO2, reducing the greenhouse effect. “The results of this study show that the phosphorus cycle is strongly perturbed, more than we thought. This opens the possibility that there are many ecosystems which are being fertilized due to atmospheric phosphorus deposited in the ocean and above all on the ground, especially in tropical and subtropical forests of Asia and Africa. If these ecosystems are fertilized and their capacities for growth and carbon storage become greater, that means that atmospheric phosphorus is modifying the carbon cycle more than we thought up to now,” comments Josep Peñuelas, professor of the Spanish Council for Scientific Research (CSIC), who carries out research at CREAF.

    The opposite could be happening in Europe or in North America, where the rhythm of coal and biomass burning has slowed in recent years. While we shouldn’t forget that this reduction in the use of coal has significantly improved air quality, phosphorus emission rates have also declined, and now the soil is not receiving the same quantity of phosphorus as it did in the past, and forest growth could be slowed for this reason.

    “The policies designed to reduce the emissions of aerosols coming from fossil fuel burning represent a clear win-win option for improving air quality, while also reducing warming caused by the CO2 produced in combustion. However, this study suggests to us that we should also take into account the phosphorus which we will stop emitting when we evaluate the capacity of terrestrial and marine ecosystems to store CO2,” concludes Professor Peñuelas.

    Article: Wang, R. Balkanski, Y. Boucher, O. Ciais, P. Peñuelas, J. Tao, S. (2014) Significant contribution of combustion-related emissions to the atmospheric phosphorus budget Nature Geoscience

    Anna Ramon, communicator officer – CREAF

    • Achieving the COP21 agreements is currently far-fetched
      true
      The COP21 set the maximum temperature increase for 2100 at 1.5° C. The only scenario which would allow achievement of this goal would require vastly reducing human CO2 emissions, significantly increasing the prominence of renewable energies, and the use of some type of artificial carbon sequestration technology. Carbon emissions from an... Read more »
    • Plants absorb pharmaceuticals and personal-care products carried by irrigation water
      true
      Pharmaceutical and personal-care products for human and animal use are increasingly released into the environment.  Water used in crop irrigation can carry chemicals that plants absorb. Source: Pixabay Plants act as excellent tracers of global pollution because they are present in almost all areas of the planet and accumulate chemical compounds present... Read more »
    • Plausible rice yield losses under future climate warming
      true
      Josep Peñuelas leads a study which suggests that rice yield will be more senstive to climate warming. Adaptatation polices to climate change are urgently needed to reduce its effect on rice yield. Rice field. Source: Pixabay Rice is the staple food for more than 50% of the world’s population. Reliable prediction of... Read more »
    • Phosphorus, once only a nutrient, has become a contaminant on a global scale
      true
      Freshwater ecosystems near densely populated areas have levels of phosphorus which are very high and out of balance with nitrogen levels. This has resulted in altered ecosystem functioning, lower water quality, and has made water conservation more difficult. The eutrophic lake Dianchi in China. The condition of the lake’s water makes... Read more »
    • Remote sensing of leaf pigments will improve climate change models
      true
      An international team of researchers co-led by Josep Peñuelas (CSIC and CREAF) has developed a new method for monitoring changes in the photosynthetic activity of perennial conifers throughout the year. This new technique, based on the analysis of remote sensing images captured by satellites, will improve global models of atmospheric... Read more »
    • The loss of soil carbon can accelerate climate change
      true
      The journal Nature has today published a study which had the participation of CSIC scientists at CREAF, Marc Estiarte and Josep Peñuelas, which demonstrates the relationship between the release of carbon from soils and the acceleration of climate change. High latitude soils have low microbial activity due to low temperatures.... Read more »
    • Josep Peñuelas receives an Honoris Causa from the University of Estonia
      true
      CSIC and CREAF researcher Josep Peñuelas has received an honorary doctorate degree from the Estonian University of Life Sciences for his studies on global change. The university council considers his studies as excellent, and also values his international collaboration with Estonian researchers. The presentation of the award took place on... Read more »
    • When the spring is warm and dry, seed production is increased in forests across Western Europe
      true
      The North Atlantic Oscillation (NAO), an important atmospheric phenomenon affecting the meteorology of the whole of Europe, impacts the quantity and timing of seed production in the continent’s forests. When the NAO favors a dry and warm spring, most of the studied forests produced more seeds and this is also done... Read more »
    • Peñuelas, awarded with Margalef Prize
      true
      In the prizes to the trajectory of a scientist, people say , the hardest is to begin, because after the first award, the winner can be pretty sure that others will come. Maybe, but there are different categories of prizes. Josep Peñuelas is starting to get the big ones, those... Read more »
    • Catherine Preece: “It is possible for women to work in science, but there are still barriers”
      true
      We interview Catherine Preece, PhD in biological studies and specialist on sub-arctic vegetation. Dr. Preece carried out her first post-doc at the University of Sheffield on agriculture-related themes. The Marie Curie grant awardee is currently doing her second post-doctoral stay in Catalonia, where she is now focusing on drought effects... Read more »
    • Llegar a los acuerdos de la COP21 es hoy por hoy una utopía
      true
      La COP21 fijaba un aumento máximo de la temperatura en 2100 de 1,5 ºC respecto la de los niveles preindustriales. Sólo un escenario donde se reduzcan mucho las emisiones humanas de CO2, haya un crecimiento importante de las renovables, y quizás con la aplicación de tecnología de secuestro artificial de... Read more »
    • Los cultivos absorben los productos farmacéuticos y cosméticos presentes en el agua de riego
      true
      Los productos farmacéuticos y de cuidado personal para uso humano y animal están incrementando su presencia en el medio ambiente. Hay que tener en cuenta además que su eliminación en las plantas de tratamiento para aguas residuales es incompleta. El agua que se emplea en el riego de cultivos puede llevar... Read more »
    • El calentamiento global provocará pérdidas en la producción de arroz
      true
      Josep Peñuelas dirige un estudio que afirma que el calentamiento global del planeta conducirá hacia una menor producción de arroz y que es necesario aplicar pronto medidas de adaptación. Campo de arroz. Fuente: Pixabay El arroz es el alimento básico para más del 50% de la población humana. Por ello, estudiar cómo... Read more »
    • El fósforo ha pasado de ser un nutriente a ser un contaminante global
      true
      Los ecosistemas acuáticos cercanos a zonas densamente pobladas de todo el mundo presentan valores muy altos de fósforo y descompensados entre nitrógeno y fósforo. Esto altera el funcionamiento de los ecosistemas, dificulta la conservación y reduce la calidad del agua. El lago eutrofitzado Dianchi, en China. El estado del agua la... Read more »
    • Un artículo de Josep Peñuelas es el 9º con más presencia en los medios en el 2016
      true
      La web Carbon Brief, especialitzada en política energética y cambio climático, destaca el artículo ‘Greening of the Earth and its drivers’ como el noveno del mundo con mayor atención por parte de los medios de comunicación digitales y las redes sociales en el 2016. El pasado 25 de abril, la revista Nature Climate... Read more »
    • La teledetección de los pigmentos de las hojas permitirá mejorar los modelos de cambio climático
      true
      Un equipo internacional codirigido por Josep Peñuelas ha desarrollado un método para monitorizar la actividad fotosintética de las coníferas. Esta nueva técnica, basada en el análisis de imágenes de teledetección obtenidas desde satélites, permitirá mejorar los modelos globales de captación de carbono atmosférico y hacer proyecciones más precisas sobre el cambio climático. El... Read more »
    • Josep Peñuelas en ‘La nit dels Ignorants 2.0′
      true
      El ecólogo Josep Peñuelas intervino en el mítico programa de Catalunya Radio, donde habló sobre su trabajo y la figura de Ramon Margalef, quien da nombre al premio recibido por el mismo Peñuelas. El investigador del CSIC en el CREAF, Josep Peñuelas, fue entrevistado el pasado 19 de diciembre de 2016... Read more »
    • La pérdida de carbono del suelo puede acelerar el cambio climático
      true
      La revista Nature publica hoy un estudio, en el que han participado los investigadores del CSIC en el CREAF Marc Estiarte y Josep Peñuelas, que muestra la relación entre la liberación de carbono por parte de los suelos terrestres y la aceleración del cambio climático. Los suelos de latitudes altas... Read more »
    • El CREAF participa en la IX Trobada d’Estudiosos del Montseny
      true
      Investigadores e investigadoras del CREAF han participado durante la jornada del jueves en tres de las ponencias de este encuentro. La reunión sirve para intercambiar experiencias, y a partir de los estudios presentados incrementar el conocimiento y sumar sinergias en favor de la conservación del patrimonio natural y cultural del... Read more »
    • Recopilación de entrevistas a Josep Peñuelas, Premio Ramon Margalef 2016
      true
      Durante el último mes, Josep Peñuelas ha concedido varias entrevistas a los medios de comunicación, a raíz de la entrega del Premio Ramon Margalef de Ecología 2016. La entrevista a Josep Peñuelas en El Periódico El ecólogo del CSIC en el CREAF, Josep Peñuelas, ha sido entrevistado en los últimos días por diversos... Read more »
    • Arribar als acords de la COP21 és ara per ara una utopia
      true
      La COP21 fixava un augment màxim de la temperatura el 2100 en 1,5 ºC respecte la dels nivells preindustrials. Només un escenari on es redueixin molt les emissions humanes de CO2, hi hagi un creixement important de les renovables, i potser amb una aplicació de tecnologies de segrest artificial de... Read more »
    • Els cultius absorbeixen els productes farmacèutics i cosmètics presents a l’aigua de reg
      true
      Els productes farmacèutics i de cura personal per ús humà i animal estan incrementant la seva presència al medi ambient. S’ha de tenir en compte a més que la seva eliminació a les plantes de tractament per aigües residuals és incompleta. L’aigua que s’usa en el reg de cultius pot portar... Read more »
    • L’escalfament global provocarà pèrdues en la producció d’arròs
      true
      Josep Peñuelas dirigeix un estudi que afirma que l’escalfament global del planeta conduirà cap a una menor producció d’arròs i que cal aplicar aviat mesures d’adaptació.  Camp d’arròs. Font: Pixabay L’arròs és l’aliment bàsic per més del 50% de la població humana. Per això, estudiar com variarà la seva producció sota un... Read more »
    • El fòsfor ha passat de ser un nutrient a ser un contaminant global
      true
      Els ecosistemes aquàtics propers a zones densament poblades de tot el món presenten valors molt alts de fòsfor i descompensats entre nitrogen i fòsfor. Això altera el funcionament d’aquests ecosistemes, en dificulta la conservació i redueix la qualitat de l’aigua. El llac eutrofitzat Dianchi, a la Xina. L’estat de l’aigua la... Read more »
    • Un article de Josep Peñuelas és el 9è amb més presència als mitjans el 2016
      true
      El lloc web Carbon Brief, especialitzat en política energètica i canvi climàtic, destaca l’article ‘Greening of the Earth and its drivers’ com el novè del món amb major atenció per part dels mitjans de comunicació digitals i les xarxes socials el 2016. El passat 25 d’abril, la revista Nature Climate Change publicava l’article ’Greening... Read more »
    • La teledetecció dels pigments de les fulles permetrà millorar els models de canvi climàtic
      true
      Un equip internacional codirigit per Josep Peñuelas ha desenvolupat un mètode per monitoritzar l’activitat fotosintètica de les coníferes al llarg de l’any. Aquesta nova tècnica, basada en l’anàlisi d’imatges de teledetecció obtingudes des de satèl·lits, permetrà millorar els models globals de captació de carboni atmosfèric i fer projeccions més acurades sobre el... Read more »
    • Josep Peñuelas a ‘La nit dels Ignorants 2.0′
      true
      L’ecòleg Josep Peñuelas va intervenir al mític programa de Catalunya Ràdio, on va parlar sobre la seva feina i la figura de Ramon Margalef, qui dóna nom al premi rebut per Peñuelas. L’investigador del CSIC al CREAF, Josep Peñuelas, va ser entrevistat el passat 19 de desembre de 2016 al programa... Read more »
    • La pèrdua de carboni del sòl pot accelerar el canvi climàtic
      true
      La prestigiosa revista Nature publica avui un estudi, en el que han participat els investigadors del CSIC al CREAF Marc Estiarte i Josep Peñuelas, que mostra la relació entre l’alliberament de carboni per part dels sòls terrestres i l’acceleració del canvi climàtic. Els sòls d’altes latituds tenen una baixa activitat... Read more »
    • El CREAF participa a la IX Trobada d’Estudiosos del Montseny
      true
      Diversos investigadors i investigadores del CREAF han participat durant la jornada de dijous en tres de les ponències d’aquesta trobada. La reunió serveix per a intercanviar experiències, i a partir dels estudis presentats incrementar el coneixement i sumar sinergies en favor de la conservació del patrimoni natural i cultural del Montseny. IX... Read more »
    • Recull d’entrevistes a Josep Peñuelas, Premi Ramon Margalef 2016
      true
      Durant el darrer mes, Josep Peñuelas ha concedit diverses entrevistes als mitjans de comunicació, arrel del lliurament del Premi Ramon Margalef d’Ecologia 2016. L’entrevista a Josep Peñuelas a El Periódico L’ecòleg del CSIC al CREAF, Josep Peñuelas, ha estat entrevistat aquests últims dies per diversos mitjans de comunicació per parlar de la... Read more »