Next 10 years critical for achieving climate change goals

Carbon dioxide (CO2) and other greenhouse gases in the atmosphere can be reduce in two ways — by cutting our emissions, or by removing it from the atmosphere, for example through plants, the ocean, and soil.

In a new study, published in the journal Nature Communications, researchers from the International Institute for Applied Systems Analysis (IIASA) used a global model of the carbon system that accounts for carbon release and uptake through both natural and anthropogenic activities.

“The study shows that the combined energy and land-use system should deliver zero net anthropogenic emissions well before 2040 in order to assure the attainability of a 1.5°C target by 2100,” says IIASA Ecosystems Services and Management Program Director Michael Obersteiner, a study coauthor.

According to the study, fossil fuel consumption would likely need to be reduced to less than 25% of the global energy supply by 2100, compared to 95% today. At the same time, land use change, such as deforestation, must be decreased. This would lead to a 42% decrease in cumulative emissions by the end of the century compared to a business as usual scenario.

“This study gives a broad accounting of the carbon dioxide in our atmosphere, where it comes from and where it goes. We take into account not just emissions from fossil fuels, but also agriculture, land use, food production, bioenergy, and carbon uptake by natural ecosystems,” explains World Bank consultant Brian Walsh, who led the study while working as an IIASA researcher.

The compares four different scenarios for future energy development, with a range of mixtures of renewable and fossil energy. In a “high-renewable” scenario where wind, solar, and bioenergy increase by around 5% a year, net emissions could peak by 2022, the study shows. Yet without substantial negative emissions technologies, that pathway would still lead to a global average temperature rise of 2.5°C, missing the Paris Agreement target.

Walsh notes that the high-renewable energy scenario is ambitious, but not impossible — global production of renewable energy grew 2.6% between 2013 and 2014, according to the IEA. In contrast, the study finds that continued reliance on fossil fuels (with growth rates of renewables between 2% and 3% per year), would cause carbon emissions to peak only at the end of the century, causing an estimated 3.5°C global temperature rise by 2100.

The authors note that not only the mix of energy matters, but also the overall amount of energy consumed. The study also included ranges for high energy consumption and low energy consumption.

The study adds to a large body of IIASA research on climate mitigation policy and the chances of achieving targets.

“Earlier work on mitigation strategies by IIASA has shown the importance of demand-side measures, including efficiency, conservation, and behavioral change. Success in these areas may explain the difference between reaching 1.5C instead of 2C,” says IIASA Energy Program Director Keywan Riahi, who also contributed to the new work.

A new model

The study is one of the first published results from the newly developed FeliX model, a system dynamics model of social, economic, and environmental earth systems and their interdependencies. The model is freely available for download and use at

“Compared to other climate and integrated assessment models, the FeliX model is less detailed, but it provides a unique systemic view of the whole carbon cycle, which is vital to our understanding of future climate change and energy,” says IIASA Ecosystem Services and Management Program Director.

This study received support from the European Research Council Synergy grant ERC-2013-SyG-610028


Brian Walsh, Philippe Ciais, Ivan A. Janssens, Josep Peñuelas, Keywan Riahi, Felicjan Rydzak, Detlef P. van Vuuren, Michael Obersteiner. Pathways for balancing CO2 emissions and sinks. Nature Communications, 2017; 8: 14856 DOI: 10.1038/NCOMMS14856

Human population growth offsets climate-driven increase in woody vegetation in sub-Saharan Africa
Africa_woody vegetations_Pixabay2017
Woody cover has actually increased over the past 20 years in large parts of Africa, and in particular in drylands. Researchers attribute much of this increase to changes in rainfall and the growing concentration of CO2 in the atmosphere. Photo by Pixabay

The rapidly growing human population in sub-Saharan Africa generates increasing demand for agricultural land and forest products, which presumably leads to deforestation. Conversely, a greening of African drylands has been reported, but this has been difficult to associate with changes in woody vegetation. There is thus an incomplete understanding of how woody vegetation responds to socio-economic and environmental change.

Deforestation in Africa has been high on the environmental agenda for decades. In a new study published in Nature Ecology and Evolution, researchers used a passive microwave Earth observation data set to demonstrate that the realities are more complex.

Many earlier studies have overlooked that woody cover has actually increased over the past 20 years in large parts (~30%) of Africa, and in particular in drylands. This increase explains the observed ‘greening’ of drylands, both north and south the Equator. Authors further find that much of this increase may be explained by changes in rainfall and the growing concentration of CO2 in the atmosphere. In humid parts of Africa trends in woody cover are more diverse. Negative trends dominate where population density is high, and often in areas with dense forests with high ecological and economic value. The agreement between the map showing woody cover changes and the one with human population growth is so striking that statistics are almost needless to transport the message:


The findings thus contradict, on one hand, generally held views of loss of woody cover in drylands, e.g. in the Sahel-belt across Africa, yet on the other hand it supports the concerns for deforestation, due to agricultural expansion in more densely populated regions, and due to logging in the sparsely populated Congo basin.

The positive and negative impacts of observed trends are difficult to balance (increase in carbon stocks, lower albedo due to greater woody cover in drylands may have a positive effect on rainfall, the loss of forests in certain humid areas may imply serious losses of biodiversity and ecosystem services…).”At continental scale, it is thus impossible to draw final conclusions, and difficult to state if positive and negative effects are balanced. Local and regional scaled studies have to be evaluated and combined with these continental scale attempts”, said Dr. Martin Brandt from University of Copenhagen.

“Given that Africa’s population is expected to continue growing throughout much of this century, there is a clear need to sharpen natural resource management strategies to counter losses while taking advantage of increases in woody cover in drylands which are large enough to act as a carbon sink” said Dr. Aleixandre Verger from CREAF-CSIC.

“The great new thing is that we are now able to localize and quantify areas of change and we are working hard to quantify the amount of carbon which is affected by observed changes. This knowledge is critical in the fight against climate change”, said Prof. Josep Peñuelas from CSIC-CREAF.

Citation: Brandt, M., Rasmussen, K., Penuelas, J., Tian, F., Schurgers, G., Verger, A., Mertz, O., Palmer, J., Fensholt, R. 2017. Human population growth offsets climate driven woody vegetation increase in sub-Saharan Africa. Nature Ecology and Evolution, 1, 0081 (2017), doi: 10.1038/s41559-017-0081.

Celebrating 10 years of ERC

The European Research Council turns 10 in 2017 – Congratulations!

10-years ERC_LOGO_WHITE1-300x300The following video prepared by Consejo Superior de Investigaciones Científicas (CSIC) commemorates this anniversary

Sequence of plant responses to droughts of different timescales: lessons from holm oak (Quercus ilex) forests
Montserrat_Lluis Comas_2017
Tree physiology, forest structure and site-specific factors interact to determine the response of forests to recurring annual droughts, however, the increasing frequency of extreme droughts is making Mediterranean forests vulnerable. Picture shows Quercus ilex forests standing on the slopes of the sacred Montserrat mountain. Photo by Lluís Comas


The functional traits of plants in regions of the world with a Mediterranean climate have been shaped to tolerate periods of water deficit. These species are adapted to summer droughts but may not be able to cope with future increases in drought intensity, duration, and/or frequency.

In a new study published in Plant Ecology & Diversity researchers review the mechanisms and traits of drought resistance and recovery of the holm oak (Quercus ilex), which they propose as a model species for Mediterranean-type ecosystems. The aim of the study was to understand the differences and links between the responses of Q. ilex to summer droughts, extreme droughts, and long-term drought experiments. A main goal was to provide an integral picture of drought responses across organizational and temporal scales for identifying the most relevant processes that are likely to contribute to determining the future of Mediterranean vegetation. Evidence from long-term drought experiments showed that acclimation processes from the molecular (e.g. epigenetic changes) to the ecosystem level (e.g. reductions in stand density) mitigate the effects of drought.

Changes in leaf morphology and hydraulics, leaf-to-shoot allometry, and root functioning are among the key mechanisms for overcoming increasing drought. The duration of drought determines its severity in terms of canopy loss and stem mortality. Although Q. ilex can vigorously resprout after such episodes, its resilience may be subsequently reduced. In the future, higher frequency of return of extreme droughts will challenge thus the capacity of these forests to recover. The insights provided by this review of the complex interplay of processes that determine the response of trees to droughts of different duration, intensity, and frequency will also help to understand the likely responses of other resprouting angiosperms in seasonally dry ecosystems that share similar functional traits with Q. ilex.

“The limits of plasticity in primary and secondary growth in relation to future drier and warmer conditions may be determinants for the persistence of some populations in their current structure and function”, said Dr. Adrià Barbeta from CSIC-CREAF.

“We recommend that future research should keep on addressing the combined effect of consecutive extreme droughts and drier average conditions on the structure and function of plant communities, but with a special emphasis on the resilience after crown damage and on the access to the vital long-lasting deep water pools”, said Prof. Josep Peñuelas from CSIC-CREAF.

Citation: Barbeta, A., Peñuelas, J. 2016. Sequence of plant responses to droughts of different timescales: lessons from holm oak (Quercus ilex) forests. Plant Ecology & Diversity, 9:4, 321-338, doi: 10.1080/17550874.2016.1212288

Future climate change will affect plants and soil differently
Reinsch_Sci reports_2017
Changes of aboveground net primary production and soil respiration in response to drought indicated that wet systems had an overall risk of increased loss of C but drier systems did not. Photo by: Pixabay


In a new study published in the Nature journal Scientific Reports, researchers have found that soil carbon loss is more sensitive to climate change compared to carbon taken up by plants. In drier regions, soil carbon loss decreased but in wetter regions soil carbon loss increased. This could result in a positive feedback to the atmosphere leading to an additional increase of atmospheric CO2 levels.

Scientists analysed data from seven climate change experiments across Europe to show how European shrubland plant biomass and soil carbon loss is affected by summer drought and year-around warming.

The research was conducted by a group of European and American scientists including Marc Estiarte and Josep Peñuelas from CSIC-CREAF.

The authors showed that soil carbon loss is most responsive to change in soil water. Soil water plays a critical role in wet soils where water logging limits decomposition processes by soil biota resulting in a build-up of soil carbon as peat. Drying of the soil removes this limitation resulting in soil carbon loss. In contrast in drier soils, reduced rainfall reduces soil water below the optimum for soil biota resulting in a decrease in soil carbon loss.

Most of the earth’s terrestrial carbon is stored in soil. The world’s soil carbon stocks are estimated to be circa 2000 gigatonnes (1 gigatonne = 1 000 000 000 000 kilograms) of carbon. The researchers showed that drought decreases and increases soil carbon more predictably than warming.

Dr Sabine Reinsch, the first author on the paper and a Soil Ecologist at the Centre for Ecology & Hydrology in Bangor, said, “This cross European study enabled us, for the first, time to investigate plant and soil responses to climate change beyond single sites.

“Putting ecosystem responses to climate change into the wider context of natural climate gradients helps us to understand the observed responses of plants and soils better.”

Professor Penuelas, the Head of the Global Ecology Unit CREAF-CSIC and co-author on the paper, Prof Claus Beier and Prof. Bridgette Emmet, as senior authors of the study commented that “The study highlights and illustrates new and fundamental understanding related to the response of ecosystems to climate change.

“By conducting the same experiment at different moisture and temperature conditions across the European continent, it has become clear and visible how the pressure from climate change factors may act differently, and sometimes even opposite, across these conditions”.

“These differences are important for our overall assessment of future ecosystem responses to climate change, but the study also shows that they can be understood and to some extent predicted.” “These results emphasize how sensitive soil processes such as soil respiration are to environmental change. “

Dr Marc Estiarte, researcher at Spanish research centre CREAF-CSIC and co-author on the paper, said, “In contrast to the soils, reducing precipitation was not a threat to plant productivity in wetter sites, and in the drier sites plants resisted proportionally more than in intermediate sites, whose aboveground productivity was shown more sensitive. This illustrates the clear difference in sensitivity of the soils compared to the plants across the climate gradient.”

The new paper in Scientific Reports considers plant and soil responses to drought and warming only across European shrublands. There are several other biomes in the world where plant and soil responses to climate change could be different.

“Understanding the responses of plants and soils in other biomes will provide a better understanding of climate change and the effects on global plant and soil interactions and the feedbacks to climate”, said Prof. Josep Penuelas from CREAF-CSIC Barcelona.

Paper reference

Reinsch, S. Estiarte M., Penuelas J. et al. ‘Shrubland primary production and soil respiration diverge along European climate gradient,’ Scientific Reports. Published online 3 March 2017. DOI: 10.1038/srep43952

The paper is available as an open access document via this URL:

Pharmaceuticals and Personal-Care Products in Plants

Pharmaceuticals and personal-care products reach plants predominantly from the use of reclaimed wastewater for irrigation. Photo by Pixabay

 Pharmaceutical and personal-care products (PPCPs) for human and animal use are increasingly released into the environment.

Plants act as excellent tracers of global pollution because they are present in almost all areas of the planet and accumulate chemical compounds present in the atmosphere, in the water with which they are irrigated, and in the soil on which they grow.

PPCP removal from plants for waste water treatment is incomplete, and the dispersal of these compounds into the environment and accumulation in plants mostly occurs from irrigating with reused water and from the application of biosolids and manure to land.

In a featured article in the journal Trends in Plant Science, UVIC and CREAF-CSIC researchers highlighted the potential of plants as biomonitors of PPCPs in the environment and the risk that the dietary intake of these PPCP-contaminated plants could have on the entire biosphere including on human health, even at low concentrations.

“Plants accumulate PPCP at concentrations that can be toxic to plants, plant microbiota, and soil microorganisms and thus affect nutrient cycling, food webs and ecosystem functioning. Furthermore, the risk to humans from dietary intake of these PPCP-contaminated plants (mostly crops) is uncertain but warrants deep consideration”, said Dr. Mireia Bartrons from Universitat de Vic, Barcelona.

“Further attention has recently been given to the effects of human and veterinary antibiotics. They dramatically affect the structure and function of soil microbial communities and promote the emergence of multidrug-resistant human pathogens that increasingly threaten successful anti-biotic treatment of bacterial infections”, said Prof. Josep Penuelas from CREAF-CSIC Barcelona.

Citation: Bartrons, M., Peñuelas, J. 2017. Pharmaceuticals and Personal-Care Products in Plants. Trends in Plant Science, (2017) 22, Issue 3, 194–203. doi: 10.1016/j.tplants.2016.12.010.

Successful 3rd Annual Paris Meeting!

From the 1st to the 3rd of February, we met in Pierre et Marie Curie University, in Paris, to gather together, share results and advance phosphorus-related science!

You can download our presentations here!

Three days of intense collaboration among the different imbalance-P groups, left us some pictures that we want to share with you.

See you all during the 4th Annual Meeting!

C3p8RnqWQAAcRyB C3pPPvMWMAAWWs0 C3pUbdfWcAA_l8D C3q1tZeWMAAjzta.jpg large C3qvUvcWAAE3JXc C3rKHLAXAAAepTp.jpg large C3u7IFMWIAAB2Bz.png large C3urOAmWEAANSZs.png large C3utQTbXAAApnJj C3vEgpmWEAEBqWt.jpg large C3vITrZXAAA63ox.jpg large zoila photos 1039 zoila photos 1040 zoila photos 1049 zoila photos 1051 zoila photos 1073 zoila photos 1087  zoila photos 1094 zoila photos 1125


Phosphorus accumulates faster than nitrogen globally in freshwater ecosystems under anthropogenic impacts


Underwater image of a lake. Photo by Pexels

Human activities have drastically accelerated Earth’s major biogeochemical cycles, altering the the nitrogen (N) and phosphorus (P) cycles.

Combined effects of cumulative nutrient inputs and biogeochemical processes that occur in freshwater under anthropogenic eutrophication could lead to myriad shifts in N:P stoichiometry in global freshwater ecosystems, but this was not yet well-assessed.

In a new study in the journal Ecology Letters researchers from Peking University and CREAF-CSIC evaluated the characteristics of N and P stoichiometries in bodies of freshwater and their herbaceous macrophytes across human-impact levels, regions and periods.

Freshwater and its macrophytes had higher N and P concentrations and lower N:P ratios in heavily than lightly human-impacted environments, further evidenced by spatiotemporal comparisons across eutrophication gradients. N and P concentrations in freshwater ecosystems were positively correlated and N:P ratio was negatively correlated with population density in China.

“Our findings indicate that anthropogenic eutrophication might thus shift aquatic ecosystems from a state of predominant P limitation to being potentially limited or co-limited by N, or by other factors such as light, especially in rapidly developing regions such as China” said Zhengbing Yan, researcher from Peking University.

“These results indicate a faster accumulation of P than N in human-impacted freshwater ecosystems, which could have large effects on the trophic webs and biogeochemical cycles of estuaries and coastal areas by freshwater loadings, and reinforces the importance of rehabilitating these ecosystems”, said Prof. Josep Penuelas from CREAF-CSIC Barcelona.

Citation: Yan, Z., Han, W., Penuelas, J., Sardans, J., Elser, J.J., Du, E., Fang, J. 2016. Phosphorus accumulates faster than nitrogen globally in freshwater ecosystems under anthropogenic impacts. Ecology Letters 19, (2016), 1237-1246. doi: 10.1111/ele.12658

Josep Peñuelas entrevistat al magazín 7 dies, d’El 9 tv

Josep Peñuelas, was interviewed on January 13th at 9tv, in “7 dies” program. You will find the interview here:

El 0 tv_entrevista Josep Penuelas_13012017

3rd IMBALANCE-P annual meeting – Paris, 1st – 3th February 2017

IMBALANCE_P_Logo_Color_kick off abstractsThe ERC Synergy Imbalance-P project has been running for two years already. A lot of work has been done and some other still needs to be carried out. It is, therefore, time for us to meet again in a confortable city such as Paris.

The format will be similar to last time, researchers will present some of their work/results/projects within the Imbalance-P in short talks of about 15 minutes allowing participants to ask some questions. It is also planned to have time to allow researchers to discuss within the different working groups (experimental, synthesis, modelling…) and among them.

The main aims of the Paris meeting are to:

  1. Present and discuss past, present and future work within the Imbalance-P project.
  2. Share and discuss the results obtained by the different groups.
  3. Develop synergies amongst groups and researchers by increasing collaboration through sharing thoughts, ideas, objectives, experiments, observations and data.
  4. Create a venue where co-authors of different manuscripts can get together to forward their writing and possibilities for such activities to be initiated.

Scientific contact: Philippe Ciais (

Administrative Contact: Zoila Lopez (

Organisers: Marcos Fernández-Martínez ( & Josep Peñuelas (

The program of the meeting is available here.

Pont des Arts. Author: Benh LIEU SONG, This picture is licensed under the Creative Commons Attribution-Share Alike 3.0


Page 1 of 41234